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CONDITIONAL GRAPH COMPLETIONS

CRAIG W. RASMUSSEN

NAVAL POSTGRADUATE SCHOOL

Abstract. If G = (V, E) is a simple graph of order p and size q, and if P is a property held by

G, we say that G is P-completable if there is an ordering eC, e2,..., e(P)_q of the edges of K. - G

such that Gk = (V, E + LUi= e,) has property P for each k = 1,2,..., () - q. The sequence {Gk)

is called a P-completion sequence. If all graphs with property P are P-completable, we say that P is

a completable property and that the the class H of graphs with property P is a completion class. Of

interest are conditional completion classes, i.e., classes for which not all orderings lead to completion

sequences. We show that several familiar classes of graphs are conditional completion classes.

Keywords: Chordal graphs, perfect graphs, matrix completions.

1. Preliminaries. Unless otherwise specified, all graphs are assumed to be sim-
ple. If G = (V, E) is a graph, and if VW C V, then we denote by (VW) the subgraph of
G induced by V'. Given a graph G = (V, E), we denote by U the complement of G,
i.e., U= (V,ET), where T = {XylX, y E V, xy V E}. We use X+Y to denote the union
of disjoint sets X, Y. If G = (V, E), F _ E(C), and f E F, then it is convenient
to let G + f denote the graph GC = (V, E + {f}). Similarly, if e E E, we let G - e
denote the graph C' = (V, E\{el). A graph G = (V, E) is chordal if G contains no
induced k-cycle for k > 4. The neighborhood N(v) of a vertex v E V is defined by
N(v) = {X E Vlvz E E}; the closed neighborhood of v is given by N[v] = N(v) + {v}.
A vertex v in G is simplicial if (N(v)) is a clique, i.e., a collection of vertices that
induces a complete subgraph. A clique need not be maximal. If V' C_ V, V' 3 0,
and (V') = (V', 0), then VW is an independent set. We denote by w(G) the order of
a largest clique in G, and by X(G) the chromatic number of G. For terminology not
defined here, see Bondy [1].

It is a well-known fact, first reported by Dirac [3], that every chordal graph
possesses a simplicial vertex. This phenomenon is the basis for an efficient recognition
algorithm for chordal graphs due to Fulkerson and Gross [5]. They show that every
chordal graph G has a perfect elimination ordering, a labeling of the vertices as
V1 , v2 ,..., ivn such that for each 1 < i < n, vi is simplicial in (vi, v+i, ... 9V).

Given a family .Y = {F1, F2,... , Fk) of subsets of some universal set, we may
construct the intersection graph G of . by letting the vertices of G be the elements
of Y and including the edge FF, if and only if F fl F, # 0. An interval graph is a
graph G that can be represented as the intersection graph of a set of intervals on the
real line. If this can be accomplished using intervals of constant length, G is said to
be unit interval. For details on constructing (unit) interval representations of (unit)
interval graphs, see Roberts [11, 12]. Another characterization of interval graphs is
due to Fulkerson and Gross [5]. They show that G is an interval graph if and only if
the maximal cliques of G can be ordered in such a way that, for any vertex z E V,
the maximal cliques containing z occur consecutively. Yet another characterization
is due to Lekkerkerker and Boland [10], who use a forbidden subgraph approach. The



details are not needed here, but a useful corollary to their result is that any chordal
graph on five or fewer vertices is an interval graph. We may similarly apply a result
of Roberts (ll] to deduce that any graph on three or fewer vertices is unit interval.

A graph G is said to be perfect if X(G') = w(G') for all induced subgraphs G' C G.
Many well-known classes of graphs fall into the class of perfect graphs, including the
chordal graphs and the bipartite graphs. Certain classes of perfect graphs arise in
applications, and many classes of perfect graphs have desirable algorithmic properties.
For a compilation of much that is known about perfect graphs, see Golumbic [7].

The notion of a hereditary property is well understood in graph theory: P is
said to be a hereditary property if, whenever a graph G has property P, all (vertex-)
induced subgraphs of G have property P. For example, the property of being chordal,
the property of being acyclic, and the property of being interval all are hereditary
properties. If P is a hereditary property, and G a graph with property P, it is typically
quite easy to show that the inheritance does not extend to edge-induced subgraphs of
G. An obvious exception is the property of being acyclic, but if G is, say, a chordal
graph containing a (noninduced) cycle of length at least four, then we may readily
find an edge-induced subgraph of G that is not chordal.

Surprisingly, though, if G is chordal and incomplete, then we may always add an
edge to G is such a way that the resulting supergraph is chordal. While implicit in
the work of Rose, Tarjan, and Lueker [14], this phenomenon first appears in the work
of Johnson et al. [8] in the context of the partial positive definite matrix completion
problem. We may generalize this phenomenon in the following way. Let G = (V, E)
be a graph of order p and size q, and suppose that G has some property P. We say
that G is P-completable if the edges of R can be added serially in such a way that
each supergraph in the resulting sequence has property P; the associated ordering
el, e2,..., ek, where k = (P) - q, is a P-completion sequence or, when no ambiguity
is likely to arise, simply a completion sequence. For convenience, we will sometimes
refer to the resulting sequence of graphs as the completion sequence.

If all graphs with property P are P-completable, we say that P is a completable
property and that the class H1 of graphs with property P is a completion class. Some
properties are such that any ordering of the edges missing from a representative G
will induce a P-completion sequence. For example, the class of all connected graphs
on p vertices for fixed p is a trivial completion class. We are interested in nontrivial
cases. In general, we shall refer to such classes as conditional completion classes;
since only conditional completion classes will be considered here, we shall omit the
adjective.

2. Chordal Completion Classes. The proof [8] that the class of chordal graphs
is a completion class depends upon the existence of perfect elimination orderings.
Specifically, the proof rests on a result of Rose et al. [14], which is stated without
proof as Lemma 2.1.

LEMMA 2.1 (ROSE, TARJAN, & LUEKER, 1976). Let G = (V,E) be chordal, 4
and suppose that G' = (V, E + F) is also chordal for some nonempty F satisfying
Ef nF = 0. Then there exists some f E F such that C' - f is chordal. Letting
G = (V, E) be a chordal graph of order p and size q, with k = (2) -q, we may

2



apply this result to find a sequence e1, e2 ,... , ek of edges such that each of the graphs
Go, Gi,...,Gk = G is chordal, where Go S Kp and Gi = Gi-i - ei. But now we
see that ek, Ck-1,. . . , eC is a completion sequence for G, as observed by Johnson et
al. [8]. We use a more direct approach to show that the class of interval graphs
is a completion class. Note that this is done without exploiting perfect elimination
orderings. While interval graphs are chordal, and so possess such orderings, it is
perhaps clearer from an intuitive point of view to exploit the defining property of
interval graphs.

THEOREM 2.2. Let G be an interval graph. If G is not complete, then G allows
an interval completion sequence.

Proof: Suppose that G = (V, E) is an incomplete interval graph with vertex set
V = {v1, v2,... , vp}. Since all chordal graphs on fewer than six vertices are interval,
we may assume that p > 6. If G is empty, we may insert any edge with no danger of
losing the interval property. Otherwise let C1, C2 ,..., Cm be a consecutive ordering
of the maximal cliques of G. Without loss of generality we may assume that the
vertices in V are labeled in such a way that vi E Cj\Ck, vt E Ck, and j < k together
imply i < I. That such a labeling can be found follows from the Fulkerson and Gross
characterization of interval graphs [5]. It suffices to show that an edge f V E can
be found such that (G7 = G + f is interval, the result then following inductively.
Let j = min{k1vivk V E for at least one i < k}, and let i = min{klvkvi V E}. Let
f = vivj. Then G" = G+f is interval. To see this, consider an interval representation
I = {fh, 12,..., k} of G. Let Ii = [I,, ri], and suppose that i < j implies that li < 1j.
Then j, determined above, is the index of the leftmost (as determined by its left
endpoint) interval that fails to overlap at least one interval that lies to its left, while
i is the index of the leftmost interval that fails to overlap Ii. Adding f = vivi to G is
then equivalent to "stretching" Ih by shifting ri to the right, leaving li fixed, until Ih
overlaps 1j. By our choice of i and j, the result is T, a collection of intervals whose
intersection graph is G + f = G*. 0

The procedure described above for interval graphs obviously does not work for
unit interval graphs, since the intervals in that case must be of constant length.
However, a modification of that procedure can work. Rather than stretch an interval,
we simply shift it along the real line until it is almost identified with its closest
neighbor, as described in the proof of the following theorem.

THEOREM 2.3. Let G be a unit interval graph. If G is not complete, then G
allows a unit interval completion sequence.

Proof: Let G = (V, E) be an incomplete unit interval graph, and let I = {II,..., I•} or
be an interval representation of G as before, but with the additional property that
each interval Ik is now of unit length. 0

As before, if li is the left endpoint of Ii then we have 11 < 12 < ... < lp. Choosing n
Ssome suitably small quantity e, shift 1, to the right, if possible, until 12 - 1l = 6. In

so doing, N(vi) and N(v2 ) merge, one vertex at a time, yet the resulting graph is
still unit interval. Now "glue" 11 and 12 together, and slide the resulting object to -

the right until 13 - 12 = 6. Continuing in this fashion, alternately shifting and gluing, r Codsu
3•'Or
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FIG. 1. Two split graphs. Both are threshold graphs, as well.

we ultimately arrive at a situation where MI Ik # 0, and the process is complete.O0

A split graph G = (V, E) is a connected graph that allows a partition V = {K, I)
such that K is a clique and I is an independent set. See figure 1 for examples of
split graphs. We show that the split graphs constitute 7 completion class. Given an
arbitrary split graph G = (K + I, E), with IKI > 2, 111 _> 2, it is clear that if u, v E I
then G + uv is not necessarily a split graph. The following simple result shows that
the split graphs are a completion class.

THEOREM 2.4. Let G be a split graph. If G is not complete, then G allows a
split completion sequence.

Proof: Let G = (V, E) be an incomplete split graph, and let {K, I} be a partition
of V such that K is a clique and I is an independent set. If K = 0 then we may
insert any edge, so assume that G is nonempty. It suffices to show that we may find
at least one edge zy such that G + zy is a split graph, since the result then follows
inductively. First suppose that some edge xy is missing, where x E K and y E I.
Then G + xy is a split graph with partition V = {K, I}. On the other hand, if each
vertex in K is adjacent to every vertex in I, then since G is not complete we know
that Il I_ 2. Let x, y E I. Then G + zy is a split graph with corresponding partition
V = {K + {x,y},I- {z,y}}. 0

3. Other Completion Classes. Each of the classes of graphs that has so far
been shown to be a completion class has been a chordal class. We now obtain similiar
results for several classes that contain nonchordal graphs.

A circular-arc graph is one that can be represented as the intersection graph of
arcs on a circle. It is easy to see that every interval graph is also a circular-arc graph,
and that the converse fails. In fact, while interval graphs are chordal, hence perfect,
circular-arc graphs in general possess neither property. Nevertheless, by selecting a
starting arc arbitrarily and by then modifying the procedures described above for
interval graphs to work, say, clockwise instead of left-to-right, we obtain the following
corollary.

COROLLARY 3.1. Let G = (V, E) be a (proper) circular-arc graph. If G is not
complete, then G allows a (proper) circular-arc completion sequence.

A comparability graph is a graph G = (V, E) that allows a transitive orientation
of its edges, i.e., an orientation F with the property that for any vertices x, y, z E V, if
(z, y), (y, z) E F then (x, z) E F. It is well known that such an orientation is acyclic,
and that a linear ordering vov 1,... ,v,-, of V may be found that is compatible with

4



C C

G: w G + uv: W

v
a b a b

FIG. 2. G is a comparibility graph, G + uv is not.

F, which is to say that for any i # j, if (vi, vi) E F, then i < j. Such an ordering
is called a topological ordering of V. See, for example, Golumbic [7] or Roberts [13].
This is a special case of the level assignment described by Harary, Norman, and
Cartwright [9] and applied by them to obtain the (simultaneous) completion of an
acyclic digraph. Figure 2 shows a comparability graph G. If we add to G the missing
edge uv, the resulting graph is easily seen not to be a comparability graph. We now
show that the comparability graphs constitute a completion class.

THEOREM 3.2. Let G be a comparability graph. If G is not complete, then G
allows a comparability completion sequence.

Proof: Let G = (V, E) be a comparability graph of order n, not complete. Let F be
a transitive orientation of E. Let ve, v1,... , v,, be a topological ordering of V that is
compatible with F. Let j = max{klin(vk) < k}, and let i = min{llvviv V E}. We
must show that G' = (W, E + vivi) is a comparability graph. It suffices to show that
F + (vi, vj) is a transitive orientation of the edges of G'. Suppose that transitivity
is violated, so that for some k, I and m we have arcs (vk, vi) and (vi, vm) but that
(Vk, V) is missing. Evidently either k = i and 1 = j or I = i and m = j, since F
is a transitive orientation of E. Suppose that k = i and 1 = j. Since our vertex
labeling is compatible with F, we know that i > j > m. Moreover, by our choice of
j, we know that vivn E E. Since (vi, v,) V F, then it must be that (vm, vi) E F, but
then (vi, vi, v,) is a directed cycle in F, a contradiction. So it must be that 1 = i
and m = j. By our labeling scheme, we know that k > i > j. By our choice of i,
Vkvi E E. Since (vk, vj) V F, then (vi, vk) E F, and we again find a directed cycle in
F. Since this cannot occur, we conclude that F + (vi, vi) is a transitive orientation
of G + vivi, showing that C' is a comparability graph. 03

Given a permutation a = (a,,a 2 ,...., a,,) of {1,2,...,n}, we denote (a-1),,
the position of i in a, by a7 1 . An inversion is a pair {i,j} E {1,2,...,n} with
the property that i is smaller than j but ag"' > a; 1 . We may construct a graph
G(a) = (V, E) with V =- {1,2,. .. ,n} and E = {iji{i,j} is an inversion in a}. Such
a graph is called a permutation graph. If we let ir = (1, 2,..., n) then G(Wr) = I,
while if we let 3 = (n, (n - 1),... , 1) then G(/3) = Kn. It is easy to show that a
permutation graph is transitively orientable, so we obtain as an immediate corollary
to the preceding theorem the fact that permutation graphs have comparability com-
pletion sequences. However, not all such sequences will maintain the permutation
property. The correspondence between permutation graphs of order n and permuta-
tions of {1, 2,... , n} suggests an algorithmic proof. Such a construction exists, and
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0 0 0

4 1 41 4
GI: G2: G3 :

3 2 3 24 3 V2
P1 = (1,0,2,3,4) P2 = (1,2,0,3,4) P3 = (2,1,0,3,4)

0 0 0

G4 : G5: PG:

3 2 33 2 2
P4 = (2,1,3,0,4) Ps = (2,3,1,0,4) A = (3,2,1,0,4)

o 0 0

4 1 41 41
G7 : Gl: G 4:

3 2 3 2 3 2
P7 =(3,2,1,4,0) P8 =(3,2,4,1,0) P9 =(3,4,2,1,0)

FIG. 3. Permutation completion sequence.

establishes the following result.
THEOREM 3.3. Let G be a permutation graph. If G is not complete, then G

allows a permutation completion sequence.

Proof: Let G = Go be a permutation graph of order p, not complete, and let 7r = 7t

be the permutation of {1, 2,... ,p} corresponding to G. If we apply the standard
bubble sort algorithm to reorder 7r in descending order, we obtain a sequence of
permutations 7r0, r1,... ,irk, where Irk = (p,p - 1,..., 1), and for any 0 < i < k - 1,
7rj+I is obtained from 7ri by an interchange, i.e., 7ri+l differs from 7ri by exactly one
inversion. It is easy to see that we obtain a corresponding sequence of permutation
graphs Go, G 1,... , Gk with the property that Gk = Kp and, for each 0 < i < k, G1+I
is obtained from Gi by the insertion of exactly one edge. Thus Go, Gj,..., Gk is a
permutation completion sequence. 0

For an illustration of the operation of the algorithm, we give as input the graph
G = Go 5- I. We denote by Pk the permutation corresponding to Gk. The corre-
sponding permutation of {0, 1,2, 3, 4} is Po = (0,1,2, 3, 4). The subsequent permu-
tations and their associated graphs are shown in Figure 3. Not shown are Go, Po,
Glo L K5, and P1o, the reversal of Po.
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An interesting subclass of the permutation graphs is the class of threshold graphs,
introduced by Chvatal and Hammer [2] and discussed in some detail in Golumbic [7].
Most useful in the current context is the characterization of a threshold graph in terms
of a degree partition of its vertex set. Adopting the notation used by Golumbic, we
let 0 < 61 < ... < 6,, < IVI denote the degrees of the vertices of G. Let 6o = 0.
For each i = 0,1,...,m, let Di = {x E Vldeg(z) = 6S}. By definition of the 6,,
all except possibly Do must be nonempty, and the sets Di induce a partition of V.
The characterization due to Chv~ital and Hammer [2] shows that a graph G with
degree partition V = Do + D, + ... + D.. is a threshold graph if and only if for every
distinct pair x E Di, y E Di, x : y, xy E E if and only ifi+j > m. Thus for

i

1 <i <M, x E Di implies that N[x] = U D,.,-j+i, and for 1 < i < [m/2j, UDi
j=l i

is an independent set, while for rm/2] < i < rn, U Di is a clique. See figure 1 for
i

examples of threshold graphs G and H. In G, we have Si = i for i = 1,2,3,4, and the
degree partition of V(G) is given by D, = {1}, D2 =- {2,3}, D3 =- {4}, and D4 = {5}.
In H, we have 61 = 1,62 - 3, 63 = 4,64 = 6, and 4S = 7. The sets in the degree
partition of V(H) are Do= {1},D1 = {2}, D2 = {3,4}, D3 = {5,6}, D4 = {7,8}, and
D5 = {9}.

That every threshold graph has split, comparability, and permutation completion
sequence follows from theorems 2.4, 3.2, and 3.3, respectively. Showing that every
threshold graph has a threshold completion sequence requires somewhat more effort
in devising a successful strategy for the selection of entering edges. We exploit the
degree partition described in the previous paragraph

THEOREM 3.4. Let G be a threshold graph. If G is not complete, then G allows
a threshold completion sequence.

Proof: Suppose that G = (V, E) is incomplete and that V = {Do, D1,..., D,,} is a
degree partition of V as described above. Assume that G is nonempty, since we can
then insert any edge. It suffices to show that we may find an edge e E E with the
property that G + e is a threshold graph, the result then following inductively. We
have several cases to consider.

First suppose that Do : 0. Let x E Do and Y E D,,,. Consider G* = G + xy. If
61 = 1 in G, then D,,, = {y}, so when xy is inserted the only changes are that x leaves
Do to enter D, and 6S is incremented. The number m of sets in the degree partition
of the nonisolated vertices does not change. If, on the other hand, 61 > 1 in G, then
D,, contains at least one vertex z - y. When xy is inserted, the degree of x rises to
1 < 61, so a new singleton set D, = {x} is induced. Similarly the degree of y rises
to 6, + 1, and so a singleton D. = {y} is created. To verify that G is a threshold
graph, it is necessary to relabel the sets in the degree partition as D•, D1,..., I)D7.,
taking into account that we now have vertices of m* = m + 2 different degrees. Thus
D• = D., D2 = D 1 -{fx, D._. = Dm-{y}, D;,. = Di,, and for each 3 < k < mr- 1
we have DZ = Dk-1. It is now straightforward to verify that for any vertices s E D!,
t E D1, s : t, the edge st E E+xy if and only if i+j > m*, and that G' is therefore
a threshold graph.

7



Now suppose that Do = 0. If m = 2, then for any x, y E D, we may insert the
edge zy, whereupon either we have the complete graph or we have a graph G* with
degree partition D, = D, - {z, y}, D2 = {z, y}, and D -= D 2. Suppose, then, that
m > 2. Let x E DI, y E D,,,-.. Consider G* = G + zy. We now have two possiblities
to consider.

Case 1: In G, D, = {x}. Then J,,, = 1 +6,-1. If Din- = {y), i.e., 62 = 1 +6k,
then when the edge zy is inserted the sets D1, D2 merge, as do the sets D", Dm,--.
We now have sets D, = D, + D2, D;. = D, + D,•-, m* = m - 2, and D* = Di+1
for each i = 2,...,m -3. If !Dm- 1I > 1, then 62 > 1 + 61. Vertex y enters Di,
leaving at least one vertex behind in Di-i, and J, rises, but the number, m, of sets
is unchanged.

Case 2: In G, ID1I > 1. Thus 6J > 1 + _ If D,•- 1 = {y}, i.e., 62 = 1 + 61,
then when the edge zy is inserted x is absorbed into D 2, D, persists (without x),
6,.-i is incremented, and Din.-. is preserved. If IDm- 1i > 1, then 62> 1 + J1. When
xy is inserted, a new set D., = {x} splits off of D, and a new set D. = {y) splits
off of D,,,_-. We now have D; = D1 - {x},D2 = {z},D:. =D,,D•._1 = {y},
m' = m+2, and DZ = Di-1 for each i = 3,...,m- 1 = m*-3.

In both cases 1 and 2, it is straightforward to show that the inequalities governing
adjacencies remain satisfied in G + xy, which is therefore a threshold graph. 0

We may view the completion of threshold graphs from another point of view.
Golumbic [6, 7] shows that the threshold graphs of order p can be placed in one-to-
one correspondence with a subset of the permutations of f1,... ,p} in the following
way. If {a} = al,a2,...,a. and {b} = bl,b 2,...,bk are sequences, then the shuffle
product {a}W {b} is the set of sequences of the form (ai/3 1 ... at/3 t), where the ai and
/3i are subsequences of {a} and {b}, respectively. Golumbic's result shows that G is
a threshold graph of order p in which k vertices are independent and the remaining
p - k constitute a clique if and only if G is the permutation graph G(nr) of some
permutation 7r E (p,p - I,...,k + 1)W(1,2,...,k). For example, the graph G in
figure 1 is the permutation graph of trG = (5,1,4,2,3), and the graph H in the
same figure is the permutation graph of lrH = (1,9,2,8,7,3,4,6,5). If we label the
vertices of G in ascending order by degree, and if IDol = c, then the first c + 1
elements of 7r are 1,2,..., c,p. The tactic described in the proof above, of either
adjoining an isolated vertex z E Do to a vertex y E D,,, or of adjoining a pendant
vertex x E D1 to a vertex y E D,,,-, can be described in terms of a sorting operation
on the associated permutation 7r. Scanning ir from left to right, we look for the
first occurrence of a subsequence of the form zy, where z E {1,2,... ,k} and Y E
{p, p - 1 ... , k + 1). These elements are in their natural order, and so the edge zy is
missing from G. We interchange x and y. The result is still an element of the shuffle
product (p,p - 1,..., k + 1)W (1,2,... Ik), and so by Golumbic's characterization we
know that the graph G* = G + zy is a threshold graph. If, in attempting this
operation, we find no such subsequence, then it must be that r = (p, p - 1,... , k +
1,1,2,. .. , k). In terms of the set representation we have m = 2, D1 = 11,2,. .. , k}
and D2 = {k + 1, k + 2,... ,p}. We now view ir as an element of the shuffle product
(p,p- 1,...,k)W(1,2,... ,k- 1), interchange k and k- 1, and continue as before,
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eventually obtaining ir* = (p, p - 1,.. . , 1) and the associated graph Kp.
With the exception of the circular-arc graphs, each completion class discussed

thus far has been a perfect class. It is natural to consider the possibility that all
perfect classes are completion classes, but we may easily show that this is not the
case. For example, consider the comparability graphs of weak orders, i.e., irreflexive
relations satisfying antisymmetry and negative transitivity. (See Fishburn [4] for de-
tails.) While these graphs have comparability completion sequences, by Theorem 3.2,
it is not possible for each of the graphs in the sequence to be the comparability graph
of a weak order. It is straightforward to show that such graphs are precisely those
containing no induced subgraph isomorphic to K2 U K,. Moreover, for any n > 3,
I,, and K& have this property, yet it is clearly impossible to construct a completion
sequence that will lead from I,, to K,,.

4. Directions For Further Work. This is preliminary work, and a number
of unanswered questions remain. The existence of chordal completion sequences was
useful in solving a problem with implications in the lore of numerical analysis and pure
matrix analysis. What of these other completion sequences? It will be interesting to
investigate their value when recast in the language of combinatorial matrix theory.

The only interesting perfect graphs that have been identified as failing to con-
stitute a completion class are the coraparability graphs of weak orders. These are
characteri7Ad by a forbidden subgraph that is disconnected. Do there exist hered-
itary classes whose forbidden subgraphs are connected yet that are not completion
classes?

This work has potential application in the arena of ccmpetition graphs. It might
be possible to devise strategies for edge (arc) inclusions in a graph G (digraph D) that
either preserve the chromatic number of the competition graph, if that is feasible, or
that guarantee that the new competition graph will be chordal, or interval, say, and
therefore easily colored.

A variation on this theme might involve questions of the following form. Suppose
that G has property P, and that for some z, y E V(G), zy V E(G). What is the
smallest supergraph of G containing zy that has property P?

In general, it might be interesting to explore the idea of performing sequential
edge inclusions until an extremal, or critical, case is constructed. If the largest graph
with p vertices and having property P can be described, and if G has P, is there a
P-preserving sequence of edge inclusions that will enable us to construct the extremal
case?

Some of these questions are close to resolution and will be discussed in a forth-
coming paper. Also forthcoming will be a discussion of practical algorithms for the
construction of certain completion sequences.

5. Acknowledgements. The author wishes to thank Ken Bogart and Garth
Isaak for their helpful observations.
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